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Received 13 September 1994 

Abstract. We derive an envelope solitary-wave solution for the following generalized nonlinear 
Schr6dinger equation 

U, +iuzU, +a3Uxx. =iblUl*U + bl(lOlzU), 

by gauge transformation. 

It is well lmown that the propagation of optical solitons can be described by the nonlinear 
Schrijdinger (NLS) equation [2] 

U, + i a 2 ~ ~ ~  = i b l ~ 1 ~ ~ .  (1) 

To improve the transmission rate in optical communications, we should use high-power 
and ultrashort optical pulses. However, as pulses get shorter and more intense, both higher- 
order dispersive and nonlinear effects become more important, so we must add some higher- 
order terms to the NLS equation [1,3]. The following generalized NLS equation including 
third-order dispersive (TOD) term and a self-steepening (ss) term can be used to study these 
effects: 

~ , + i a z ~ , , + q ~ . ~ ~  = ~ ~ I U I * U + ~ ~ ( I U I ~ U ) ,  (2) 

where a2, a3. b, bl are real constants and a3bl i 0. 
Optial solitons are also very important for telecommunications, since optical solitons are 

ideal carriers of information and they can propagate stably over a long distance. However, 
the number of soliton equations is still limited, since solitons exist only under very special 
conditions, that is, the dispersive and nonlinear effects must exactly balance. 

In this letter we derive an envelope solitary-wave solution for equation (2). This solution 
has a form similar to that of the envelope one-soliton solution of the NLS equation. 

To obtain a travelling-wave solution, consider a gauge hansformation 

U = W ) f ( X .  t )  
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where f ( x .  t )  = expi(kx + mt + UO). F ( e )  is a real function. c = x - ut - 00, then 
substituting these expressions into equation (2), we have 

a3F“- ( v + 2 a ~ k + 3 a ~ k 2 ) F ’ - 3 b ~ F 2 F ’ + i [ ( a 2 + 3 a 3 k ) F ”  
+ (m - a2k2 - a3k3)F - ( b  + blk)F31 = 0. (3) 

From the real and imaginq parts of equation (3), we obtain two equations: 

~ 3 F ” ‘ - ( ~ + 2 a 2 k + 3 3 k ~ ) F ’ - 3 b l F ~ F ‘ = O  (4) 

(a2 + 3a3k)F” + (m - a2k2 - a3k3)F - (b  + blk)F3 = 0. (3 
Integrating equation (4), we obtain 

a 3 F ” - ( u + 2 ~ 2 k + 3 a 3 k ~ ) F  - b l F 3  = O .  

Since F satisfies both equations (5) and (6), we have: 

- -  m - a2k2 - ask3 U + 2azk -k 3a3k2 -~ s - _ -  
a2 + 3a3k a3 

( b + b i k )  bi 
a2+3a3k a3 

Then both equations (5) and (6) have the form: 

r. - = __ = 

F” - s F  + r F 3  = 0. 

To obtain solitary-wave solutions, we assume s > 0, r 3~ 0 and integrate equation (9). 
obtaining 

(F’)’ = sF2 - $rF4 + C. (10) 

Letting C = 0, and integrating equation (10) again, we have 

Using equations (7) and (8), we solve k, m, U recursively in terms of s and the 
coefficients of equation (2), then we obtain the following solution: 

U =  E s e c h  -- [-.& - ut - OO)] exp i(kx + mt + UO) 

where s is a positive real number and 

m = -s(az + 3 q k )  4- a2kz + ask3 

v = a3s - 2a2k - 3 q k 2 .  
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Since equation (2) resembles an equation considered by Hirota, we show that 
equation (2) and Hirota’s equation are essentially different If we use the same procedure 
as above to solve the following equation of Hirota [13]: 

then we obtain the following one-soliton solution: 

. . ~ .  
U =  -- sech [&(x - ut - Bo)] exp i(kx + mr + CO) E 

where. s is a positive real number and 

b+3hk  h 
a? + 3a3k - a3 

- _  

but U and m have the same form as equations (12) and (13). 
k will be eliminated from equation (15) and we get a3b = azh, this is exactly~the 

constraint condition of Hirota’s equation 1131. 
Comparing the solutions of Hirota’s equation and equation (2). we find the following 

differences between equation (2) and Hirota’s equation: 
(i) For equation (Z), k is completely determined by the coefficients of equafion (2). but 

for Hirota’s equation, k is an independent parameter. 
(ii) Hirota’s equation has a soliton solution under the consm.int of a3b = azh, but 

equation (2) has a solution under the constraint of a3bl c 0. 
(iu) The amplitude of U, is different from ,/?&i&, since 61 is the 

coefficient of the term (lU1*U), and 3h is the coefficient of the term IUIzUx. 
Since equation (2) is obviously different from other soliton equations, I guess that 

equation (2) could be a new,soliton equation, at least we do not have sufficient evidence to 
exclude this possibility at the moment. 

Physically, U,, is the thiid-order dispersion (TOD) term, and (ICJl*CJ), is the self- 
steepening (ss) term [&lo]. From the existence of the above nice travelling-wave solution, 
we find that if we add the TOD and SS effects to the NLS Quation, these effects may balance 
again, even the pulse is very short such that we cannot ignore the TOD and SS effects. 

We have used split-step Fourier methods [ 11,121 to solve equation (Z), and the numerical 
results agree with the above solutions. 

Although the envelope solitary-wave solution of equation (2) has a form similar to that 
envelope one-soliton solution of the NLS equation or Hirota’s equation, it is premature to call 
it a soliton solution, because it is not known whether equation (2) has N-soliton solutions 
and any other properties of soliton equations. To answer this question, much work needs 
to be done. Since equation (2) is of direct physical interest, I hope that this work will be 
done in the future. 

The author wishes to acknowledge Dr H Burchard and Dr J Krasinski for their help. 
The author also thanks the Department of Mathematics, Oklahoma State University for 
its support. 



L934 Letter fo fhe Edtfor 

References 

[I1 Govind Agrawal P 1989 Nonlinear Fiber Optics (New York: Academic) 
[2] Ablowitz M J and Segur H 1981 Solitom and the Inverse Scottering Trnnrform SIAM 
131 Kodama Y and Hasegawa A 1987 IEEE 3. Qunntwn Ekctron QED 510-24 
[41 Grischkowsky D, Coums E and Annstmng J A 1973 Phys. Rev. Le#. 31 422 
151 Tmar N and Jain M 1981 Pkys. Rev. A 23 1266 
[SI Anderson D and Lisak M 1983 Phys. Rev. A 27 1393 
171 Yang G and Shen Y R 1984 Op. Len. 9 510 
[SI O ~ m a  K, Ichikawa Hand Ab? Y 1987 Opt Lett 12 512 
[91 Kodama Y and No& K 1987 Opt. Len. 12 1038 
I101 Pwson G W, Zanoni Rand Krasinski J S 1993 Opt 6 m m  103 507-18 
[ll] Pathria D and Moms J LI 1990 J. Compht. Physics 87 108-25 
[I21 Pathria D and Moms J LI 1989 Phys. Scr. 39 673-9 
[13] Hirota R 1973 3. Ma&. Phys. 14 805-9 


